segunda-feira, 10 de abril de 2017

Stress oxidativo e envelhecimento



O stress oxidativo é o grande pilar da teoria do envelhecimento. Em jeito de brincadeira, digo muitas vezes nas minhas aulas que nós envelhecemos porque temos o péssimo hábito de passar toda a nossa vida a respirar oxigénio. Basicamente é o oxigénio que nos faz viver, mas também é ele que nos mata aos bocadinhos, ou seja, que nos faz envelhecer…
E qual é a relação entre o oxigénio e o envelhecimento? A resposta resume-se a duas palavras: stress oxidativo! Esporadicamente, há moléculas de O2 que se transformam em espécies reativas de oxigénio, sendo que a maioria é neutralizada pelas nossas defesas antioxidantes (mais informação sobre esse assunto aqui). No entanto, há sempre algumas espécies reativas de oxigénio que conseguem contornar as nossas defesas e, consequentemente, conseguem causar pequenos danos nalgumas das nossas biomoléculas. Apesar de esses danos não terem muito significado biológico, quando avaliados isoladamente, à medida que vamos envelhecendo, os mesmos vão-se acumulando, e esses danos cumulativos começam a traduzir-se pela perda de algumas funcionalidades. São exemplos a perda de maleabilidade da pele, a rigidez articular, a perda de capacidade sensorial, etc.
Sendo assim, tudo o que possa acelerar a nossa taxa metabólica tem potencial de nos fazer envelhecer mais rapidamente, pois aumenta a produção de espécies reativas de oxigénio. Neste contexto, é particularmente evidente o efeito que o stress emocional tem! Por exemplo, pessoas que estejam sujeitas a cargos e atividades de elevado stress, envelhecem a uma taxa muito superior à daqueles que têm uma vida muito mais relaxada.
Por último, gostaria de deixar claro que o stress oxidativo não é o único fator responsável pelo envelhecimento mas é, seguramente, um dos principais, por isso se queremos envelhecer de forma mais lenta, temos que garantir um adequado equilíbrio entre os pró-oxidantes e os anti-oxidantes!
.

sexta-feira, 17 de março de 2017

Mioglobina

A mioglobina é uma hemoproteína citoplasmática que consiste numa única cadeia polipeptídica de 154 aminoácidos. Expressa unicamente em miócitos cardíacos e fibras musculares esqueléticas oxidativas, a mioglobina foi assim chamada por causa da sua semelhança funcional e estrutural à hemoglobina. Como a hemoglobina, a mioglobina liga-se reversivelmente ao O2 e, assim, pode facilitar o transporte de O2 a partir de glóbulos vermelhos para as mitocôndrias durante períodos de aumento da atividade metabólica ou servir como um reservatório de O2 durante hipoxia ou anoxia.
A estrutura da mioglobina foi delineada pela primeira vez por John Kendrew há mais de 40 anos atrás e trabalhos subsequentes demonstraram que é uma cadeia de polipéptidos que consiste em oito α-hélices. Liga-se ao oxigénio pelo seu resíduo heme, um anel de porfirina: complexo do ião de ferro. A cadeia polipeptídica é dobrada e embala o grupo prostético heme, posicionando-o entre dois resíduos de histidina, His64 e His93. O ião de ferro interage com seis ligantes, quatro dos quais são fornecidos pelos átomos de nitrogénio dos quatro pirrroles e compartilham um plano comum. A cadeia lateral, imidazol da His93, fornece o quinto ligando, estabilizando o grupo heme e deslocando ligeiramente o ião de ferro para fora do plano do heme. A posição do sexto ligando, na desoximioglobina, serve como local de ligação para o O2, bem como para outros ligandos potenciais, tais como o CO ou NO. Quando o O2 se liga, o ião ferro está parcialmente puxado para trás em direção ao plano da porfirina. Embora este deslocamento seja de pouca importância na função da mioglobina monomérica, fornece a base para as mudanças conformacionais que fundamentam as propriedades alostéricas da hemoglobina tetramérica. Além disso, estudos que utilizam a difração de raios-X e técnicas de ligação de xénon identificaram quatro cavidades internas altamente conservadas dentro da molécula de mioglobina que pode servir para concentrar e orientar moléculas para a ligação ao resíduo heme.
Relacionada com o seu papel como um reservatório de O2, a mioglobina funciona também como um tampão de PO2 intracelular (pressão parcial de O2). Semelhante ao papel da creatinafosfoquinase, que funciona para tamponar concentrações de ATP quando atividade muscular aumenta, a mioglobina funciona para tamponar concentrações de O2. Como resultado, a concentração intracelular de O2 mantem-se relativamente constante e homogénea, apesar de aumentos no fluxo de O2 dos capilares para as mitocôndrias, induzidos pela atividade física.

Texto escrito por:
Ana Rita Cardoso
João Faria
Joel Mateus
Pedro Desport
.

sexta-feira, 10 de março de 2017

Stress oxidativo e respiração celular

Durante a respiração celular, os eletrões são transferidos do NADH ou do FADH2, ao longo de 4 complexos proteicos existentes na membrana interna mitocondrial, até chegarem à molécula de O2 (podem ler mais sobre o assunto aqui). Na última etapa do processo, os eletrões são transportados um a um, ou seja, vão chegar ao oxigénio um de cada vez.
Esta situação, que pode parecer apenas um detalhe para muitos, tem, na realidade, implicações muito importantes para a nossa bioquímica, pois significa que todas as moléculas de O2 são, ainda que temporariamente, transformadas num radical livre, o anião superóxido. Isto significa que, literalmente, a cada instante estamos a produzir grandes quantidades de espécies reativas de oxigénio. No entanto, esta situação que é potencialmente muito perigosa, não tem, em condições normais, consequências dramáticas para as células, principalmente por 2 motivos:
1. Existem mecanismos que impedem que o anião superóxido se difunda do complexo 4, antes de estar completamente reduzido a água. Ou seja, forma-se o radical livre, mas permanece no local e rapidamente recebe outro eletrão, deixando de ser radical livre.
2. Como existem sempre alguns aniões superóxido que conseguem escapar ao primeiro mecanismo, temos outros mecanismos de defesa, sendo que, neste contexto, o mais importante é a presença de uma enzima mitocondrial designada por superóxido dismutase. Esta enzima, que também apresenta uma isoforma citosólica, vai provocar a dismutação do anião superóxido, convertendo duas dessas moléculas em peróxido de hidrogénio.
Claro que vão existir aniões superóxido que vão conseguir escapar também à superóxido dismutase, mas em condições normais são muito poucos. Além disso, ainda temos várias outras defesas antioxidantes à espera deles…
.

terça-feira, 28 de fevereiro de 2017

Insulina

A insulina é uma hormona polipeptídica produzida, armazenada e secretada nas células Beta dos ilhéus de Langerhans, no pâncreas. (Num corte histológico vê-se que ocupam a parte central). É uma hormona anabólica que actua ao nível do fígado, tecido adiposo e com influência no cérebro.
Esta proteína apresenta duas cadeias polipeptídicas, com 21 aminoácidos na cadeia A e 30 na cadeia B, unidas por ligações dissulfeto o que confere uma maior estabilidade e um correcto enrolamento. Começa a ser produzida na forma de pré-pro-insulina que, por acção da peptidase é sinalizada para formar a pro-insulina. Dá-se uma clivagem proteolítica do péptido C formando a insulina bioactiva de duas cadeias, sendo armazenada em grânulos secretores para posterior secreção da insulina (activa).
Tem como função primordial a regulação dos níveis de glicemia no sangue, face a situações de hiperglicemia. Deste modo, a glicose funciona como um sinal bioquímico que desencadeia a sua secreção. Assim, quando são absorvidos alimentos que contêm hidratos de carbono é metabolizada a glucose em ATP e este, por sua vez, desencadeia a secreção de insulina. Interacções proteína-proteína e fosforilações são utilizadas para transmitir o sinal. No tecido adiposo e no músculo, a ligação da insulina a receptores da membrana desencadeia o deslocamento de vesículas ricas em GLUT4 que se fundem com a membrana, aumentando a captação celular, sendo um transporte dependente de insulina.
Por outro lado, no fígado, a insulina ativa a enzima glicoquinase, que é responsável pela conversão de glicose em glicose-6-fosfato; garante uma concentração intracelular de glicose menor do que a concentração extracelular e, por conseguinte, um gradiente de concentração de glicose favorável à sua entrada nessas células, através do transportador GLUT-2, sendo fosforilada pela fosfoquinase antes de ser metabolizada pela glicólise, ciclo de krebs e pela cadeia respiratória para produzir ATP. Desta forma, após a ingestão de alimentos, a glucose é absorvida nos intestinos e é lançada na corrente sanguínea, fazendo com que as concentrações no sangue se elevem, levando a uma hiperglicemia transitória. O pâncreas liberta insulina no sentido de fazer baixar as suas concentrações, permitindo o consumo de glucose pelas células bem como estimular o armazenamento de glucose no fígado, sob forma de glicogénio; o fígado e o músculo metabolizam a glucose em triacilgliceróis, transportados como VLDL para serem armazenados no tecido adiposo, reservas úteis em situações de jejum. A transmissão do sinal cessa, terminada a refeição, por desfosforilação do receptor de insulina pela proteína-tirosina fosfatase.
Em síntese, a Insulina estimula a glicogênese, a síntese de ácidos gordos e a glicólise e inibe vias antagónicas: glicogenólise, a degradação de ácidos gordos e gluconeogénese hepática. Estimula também a síntese proteica. Tem acção sobre enzimas inerentes bem como efeitos na transcrição de genes. Atua, também em receptores específicos no hipotálamo para inibir o acto de comer, regulando assim a alimentação e a conservação de energia.
Os erros inatos do metabolismo das células beta podem produzir uma produção excessiva ou defeciente de insulina por mutações de genes (GCK), alteração do Kir 6.2 ou factores de transcrição da síntese de insulin,respectivamente. O aumento da glucose leva ao aumento da pressão osmótica, glicação de proteínas e a formação de espécies reactivas de oxigénio (EROS).
A Diabetes é a doença metabólica caracterizada pelo aumento de acúcar no sangue: Pode ser do Tipo I - na qual o organismo deixa de produzir insulina pela destruição das células B do pâncreas. É importante averiguar sintomas de polidipsdia, respiração com aroma frutado, níveis de glucose no sangue bem como em casos mais severos de cetonas; realizar exame de random, teste amilase no sangue para função pancreática, entre outros. As terapêuticas essenciais centram-se em insulinoterapia, reposição de líquidos, substituição de eletrólitos e alimentação cuidada. Por sua vez, no Tipo II, as células não produzem insulina suficiente para baixar a concentração de gucose ou existe uma condição de resistência à insulina. Adipócitos, miócitos e hepatócitos não respondem correctamente. Apresenta sintomas semelhantes ao tipo I porém mais graduais. É necessário realizar teste à glicemia em jejum e para níveis anormais prosseguir à investigação para curva glicémica; hemoglobina glicada, controlar consumo de álcool, etc.
Podem levar a complicações como retinopatia diabética; aterosclerose, nefropatia diabética; neuropatia; enfarte do miocárdio/AVC; infecções – leucócitos menos eficazes em hiperglicemia; hipertensão e oxidação de vasos sanguíneos. Ter em atenção a saúde oral (relação da quantidade de açúcar com bactérias). Actualmente existem no mercado vários fármacos que colmatam problemas com a insulina, bem como diferentes tipos de insulina injectável dependendo da causa da doença e do propósito de acção.

Texto escrito por:
Denilson Araújo
Prescília Sampa
Solange da Costa
.